A Graph Representative Structurefor Efficient Querying

Yu WaiHlaing, Kyaw May Oo
University of Computer Sudies, Yangon
yuwaihlaing.1987@gmail.com

Abstract

Graphs are prevalently used to model the
relationships between objects in various domains. With
the increasing usage of graph data, it has become more
and more demanding to efficiently process graph
gueries. Querying graph data is costly since it involves
exhausted graph isomorphism testing. In Ph.D
research work, we propose a graph representation and
querying approach. There are 2 main phases in our
approach: code generation phase and query phase. In
this paper, an efficient graph representative structure
that is generated by code generation phase is
presented. In code generation phase, there are two
main processes. preprocessing of graph data and code
generation. Our proposed graph representative
structure is called graph code.Edge dictionary is
efficiently used to narrow down the search space of
graph codes. To generate graph code, edge dictionary
and adjacent edge information are used.Our
experiment also shows that for storage space required
by our graph code is smaller than other formats such
as XML file and imagefile.

1. Introduction

pair of node indices and, possibly, associated
information such as an edge weight. Adjacency array
support easy access to the edges leaving any ydartic
node, we can store the edges leaving any node in an
array. If no additional information is stored withe
edges, this array will just contain the indicestioé
target nodes. Next one is adjacency list. Sizehef t
array is equal to number of vertices. Let the atvay
array[]. An entry array[i] represents the linkedt Iof
vertices adjacent to thé vertex. Ann-node graph can

also be represented by ann adjacency matrix A. Al |

is 1 if (i, j) €E and O otherwise. Among them the two
most popular graph representative structures are
adjacency list and adjacency matrix.

The most important one is to be compact and
less time needed in generating representative
structures. Our graph code is a new way of
representing graph data to process graph queries
without verifying between graph structures. It is
developed to process labeled, undirected chemical
compound graphs in the area of chemical informatics

The rest of the paper is organized as follows.
Section 2 discusses about related work. Prelinesari
are presented in section 3. In section 4, graph
representative structures including our graph camde
explained.Experimental results are shown in sediion

A graph describes relationships over a set ofAnd then conclusion is in section 6.
entities. With node and edge labels, a graph can
describe the attributes of both the entity set trel 2. Related Work
relation. Labeled graphs appear in many research o h b ¢ diff
domains such as drug design[l], protein structure ver the years, a number of different structures
. . . . have been developed to represent graphs more and
comparison[2], video indexing[3], and web

information[4]. In addition, rapidly increasing Web morg efficiently. Devglopmg such structures is
sites and XML documents can also be modeled agamcularly challenging in terms of storage spacel
graphs. Therefore, it is evident that graph dath wi computational time.

. MichihiroKuramochi et al. proposed a canonical
become more and more prevalently used in the near , ,
future labeling [5] for representing graphs. Canonicakladif

Structures that can be represented as graphs afe graph is nothing more than a code that uniquely

based on graph theory. Graph databases apply gradﬂem'f'es, the graph such that ",c two grgphs are
. . . .__isomorphic to each other, they will be assigned the
theory to store information about the relationships

between entities in terms of graphs. There are man?ame code. Canonical label of a graph is as thegstr

different structures that can be represented ashgra obtained by concatenating the upper triangulariestr

Perhaps the simplest graph representation of dgsap of the graph’s adjacency matrix. Once the canonical

as an unordered edge sequences. Each edge ccmtainls‘fjlbeI has been obtained, the adjacency matrix

representation is discarded.
141

The disadvantage of this structure is if a gr
has |V| vertices, the complexity of determining
canonical label is in O(|V!|) making it impracticlen
for modern size graphs.

The search space of canonical labeling cai
reduced with vertex invariants. Vertex invariantai
well-known technique in wich we can partition th
vertices by their degrees and labels. Then, wealir
the possible permutations of vertices inside ¢
partition. Vertex invariants do not asymptotice
change the computational complexity of canon
labeling. For example, if given graph is regular, w
cannot create fine partitions and vertex invarizof
not reduce the search space [6].

R Vijayalakshmi et al. [propose FGAF: a
novel approach for detection and elimination
automorphic graphs in graph databas-GAF uses
edgebased graph representation. It involves three |
phases: preprocessing, feature extraction andrpi
matching. In preprocessing, edge list of the ingraph
is generated. In feature extraction phase, grideds
generated. In pattern matchinget new grid code |
compared with those of other graphs in graph dat

The disadvantage of this structure is it requ
exhausted enumeration to generate grid «

3. Preliminaries

This section presents the key concepts, nota
and terminologyused in this paper, which incluc
labeled graph, graph isomorphism, and graph
representation.

Definition 1 (Labeled Graph) A labeled graph is
four-element tuple G = (V, B;, f) where V is a set ¢
vertices and E is a set undirected edges jo two
distinct verticesy, is the set of vertex and edge lak
and f: V U E— Y maps vertices and edges to tt
labels.

In this paper,he size of a graph defined as the
number of its edges. An example labeled grap
shown in figure 1.

1 C—
S \
S s
3C
s> s
5 o/
Figure 1. A Labeled Graph

Definition 2(Graph Isomorphism) Two graphs G1 :
(V1, E1) and G2 = (V2, E2) are isomorphic if theg

142

topologically identical to each other, that is,rthés a
mapping from V1 to V2 sucthat each edge in E1 is
mapped to a single edge in E2 and vice v

Definition 3(Graph Code Representation) For a

graph G, the code of G, denoted by code(G) is &

form €4{(v),eidag;...}... depending on adjacent ed

information of preprocessing,q is the edge id, v is
vertex label on which two edges are connecteqg; is

list of adjacent edge ids for this ed

4. Graph Representative Structure:

A graph data structure consists of a firset of
vertices together with a set of ordered pairs these
nodes.These pairs are known iedges.Traditionally,
the two most commonly used graph representa
structuresare adjacency matr and adjacency list.
Graph can also be represented as XML represen
and image representation (.pjpg,.gif).

4.1. Adjacency Matrix

An adjacency matrixs a means of representi
which vertices of a graph are adjacent to whiclerc
vertices.the adjacency matrix of a finite graG onn
vertices is the n x mnatrix where the nc¢-diagonal
entry g is the number of edges from verti to vertex
j, and the diagonal entryg;, depending on the
convention, is either once or twice the numberdufes
from vertex i to itself.Figure 2 shows an examg
graph and its adjacency mat

[
—

(@) ()

Figure 2. (a) An Example Graph G (b) Its
Adjacency Matrix

4.2. Adjacency List

An array of linked lists is used. Size of the a1
is equal to number of vertices. Let the array brayd}.
An entry array][i] represents the linked list of tiess
adjacent to theith vertex.

Figure 3 shows an adjacency lisfpresentatiorof G.

> || —=4 |/
> 4| = 2| 3|/

_.,.I _.,.|3
— 1| = 4] 2|/
-1/

. bt D
|
h J
L
I

=
!

h J

14
I

Eai

Figure 3. Adjacency List Representation of C

4.3. XML Representation and

Representation

Image

Most of the chemical compound graph dati
are available in XML filsand image file. Figure
4showsan XML representation for grapli.

<?2mlversiors"1.0"encoding"UTF-8"?>
<graph mode=' static" defaultedgetype= directed" >
<nodes><node id=1" label="C" />
<node id="2" label="C" />
<node id="3" label="C" />
<node id="4" label="C" />
<node id='5" label="0O" /></nodes:
<edges><edge sourcé2" target="2" label="s"/><
<edge sourcexl" target="3" label="s"/>
<edge sourcex2" target="4" label="s"/>
<edge sourcex3" target="5" label="s"/>
<edge sourcex4" target="5" label="s"/></edges:

</graph>

Figure 4. XML Representation for Graph G1
4.4. Our Graph Code

In this section, we explain ste-by-step
procedure of generating our graph code in ¢
generation phase. It involves two main proces
preprocessing and code generation.

143

4.4.1. Preprocessing

In this step, he input xml file is parsed usir
xml parser. Br a graph the vertex list, edge list, ¢
adjacent edge information are generated. Eachx
in the graph is assigned with unique
Vertexid : 1 2 3 4 5
Vertex List : C C C C (0]

Then the edge list of the graph is definec
(Vid,L,Vid) where W is the vertex id, L is the ed(

Vid,L,Vid : 1,s,2 1,5,
Edge List: Cs,C Css(C
label.

2,54
C,s,C

3,8,5
C,s,0

4,85
C,s,0

4.4.2. Edge Dictionary

When a graph introduced to the database,
edges in the graph are added into edge dictiorfe
these edges are not already existed in edge dictic
In this dictionary, these edges are assigned withad)
unique ids for further graph processing. re 5 shows
the example edge dictionary for input gra

Id Edge
1 <C,s,C:
2 <C,s,0:

Figure 5. Edge Dictionary

4.4.3. Code Generation

A graph is represented holistically into a gr:
code that captures the structural representatiothe
graph. Every edge in the graph is assigned witba)
unique identifier already defined in the edge dicéiry.
For each edge ,ethe adjacent edges e are
investigated in the graph where the identifierstrod
adjacent edges are the global edge identifiershé
edge dictionarynstead of using the edge itself, us
the edge ID in the dictionary can have advantage
three ways:

» Firstly, using theedge ID in the code saves |
amount of storage spa

e« Secondly, using the same ID for {
duplicated edge is effective when construc
the edge code.

e Thirdly, using the edge ID in the code redu
the time of matching grapl

Edge dictionary and adjent edge information
are used to generate graph code. Graph codes

input graphs are stored in graph code store. Arg. Conclusion and Future Work
example graph code of G1 is:

code(G1)=1{(c)1,(c)1}1{(c)1,(c)2} 1{(c)1,(c)2} Our goal is to find graph isomorphism query in

2{(c)1,(0)2} 2{(c)1,(0)2}. graph dataset efficiently.The edge dictionary isdut
narrow down the search space. Because most of the

5. Experimental Result graphs in graph dataset mostly contain similar sdge

By representing graphs as graph codes, the storage

The experiment described in this section use theSpace can be greatly reduced. Our approach can be
AIDS Antiviral Screen Dataset. The experiment is aytended to labeled directed graphs and graph imgery
done on the Intel Core i5 with 2GB main memory.The 55 3 future work.
AIDS Antiviral Screen Dataset from Development
Therapeutics Program NCI/NIH is available publicly. References
The dataset contains 43,906 chemical compounds.
Each compound has 32 vertices and 34 edges ifit] C. Borgelt, and M.R. Berthold, “Mining Molecular
average. The maximum one has 188 vertices and 196 Fragments: Finding Relevant ~Substructures of

edges.The total number of distinct vertex label§ds Molecues” |CDM, pp. 51'58’(12002%)
The major portions of vertices are C, O, N. In this 2] J. Huan, W. Wang, D. Bandyopadhyay, J. Snoeyink,

. Prins and A. Tropsha, “Mining Protein Family Spexcif
section, we evaluate the storage space of our graph

) " Residue Packing Patterns from Protein Structure
codes with the storage space required by other two Graphs”, In Proceedings of th& &nnual International

formats: xml file and image file (.png).In figure & Conference on Research in Computational Molecular

can be seen that the storage space of our grags t®d Biology (RECOMB), pp. 308-315, 2004.

significantly less than the other two formats. [3] B.T. Messmer, and H. Bunke, “A Decision Tree

Approach to Graph and Subgraph Isomorphism

Detection”,Pattern Recoginition, December 1991, Vol.

o p 32, No. 12, pp. 1979-1998.

_— // [4] S. Raghavan, and H. Garcia-Molina, “Represeniifeh

_— / Graphs”, In Proceeding of IEEE International

_— / _ Conference on Data Engineering, 2003.

- / L fie [5] M. Kuramochi, and G. Karypis, “An Efficient
/ imege il Algorithm for Discoverying Frequent Subgraphs”, In

1500 / GraghCode Proc. 2001 International Conference on Data Mining

10000 — (ICDM'’ 01), pp. 313-320, San Jose, CA, Nov. 2001.
5000 [6] S. Fortin, “The graph isomorphism problem”, Tieial

0 e - Report TR 96-20, Department of Computing Science,
University of Alberta, 1996.

R. Vijayalakshmi, R. Nadarajan, P. Nirmala, and M
Thilaga, “A Novel Approach for Detection and

. -) Elimination of Automorphic Graphs in Graph
Figure 6. Analysis of Storage Space for Various Database”, Int. J. Open Problems Compt. Math., 9.
Numbers of Graphs between Graph Code, XML No. 1, March 2010.

File, Image File

50000

45000

Memory Usage (KB}

20 400 600 800 1000 1200 1400 [7]
Number of Graphs

144

