
141

A Graph Representative Structurefor Efficient Querying

Yu WaiHlaing, Kyaw May Oo
University of Computer Studies, Yangon

yuwaihlaing.1987@gmail.com

Abstract

Graphs are prevalently used to model the
relationships between objects in various domains. With
the increasing usage of graph data, it has become more
and more demanding to efficiently process graph
queries. Querying graph data is costly since it involves
exhausted graph isomorphism testing. In Ph.D
research work, we propose a graph representation and
querying approach. There are 2 main phases in our
approach: code generation phase and query phase. In
this paper, an efficient graph representative structure
that is generated by code generation phase is
presented. In code generation phase, there are two
main processes: preprocessing of graph data and code
generation. Our proposed graph representative
structure is called graph code.Edge dictionary is
efficiently used to narrow down the search space of
graph codes. To generate graph code, edge dictionary
and adjacent edge information are used.Our
experiment also shows that for storage space required
by our graph code is smaller than other formats such
as XML file and image file.

1. Introduction

A graph describes relationships over a set of
entities. With node and edge labels, a graph can
describe the attributes of both the entity set and the
relation. Labeled graphs appear in many research
domains such as drug design[1], protein structure
comparison[2], video indexing[3], and web
information[4]. In addition, rapidly increasing Web
sites and XML documents can also be modeled as
graphs. Therefore, it is evident that graph data will
become more and more prevalently used in the near
future.

Structures that can be represented as graphs are
based on graph theory. Graph databases apply graph
theory to store information about the relationships
between entities in terms of graphs. There are many
different structures that can be represented as graphs.
Perhaps the simplest graph representation of a graph is
as an unordered edge sequences. Each edge contains a

pair of node indices and, possibly, associated
information such as an edge weight. Adjacency array
support easy access to the edges leaving any particular
node, we can store the edges leaving any node in an
array. If no additional information is stored with the
edges, this array will just contain the indices of the
target nodes. Next one is adjacency list. Size of the
array is equal to number of vertices. Let the array be
array[]. An entry array[i] represents the linked list of
vertices adjacent to theith vertex. An n-node graph can

also be represented by an n×n adjacency matrix A. Ai j

is 1 if (i, j) ∈E and 0 otherwise. Among them the two
most popular graph representative structures are
adjacency list and adjacency matrix.

The most important one is to be compact and
less time needed in generating representative
structures. Our graph code is a new way of
representing graph data to process graph queries
without verifying between graph structures. It is
developed to process labeled, undirected chemical
compound graphs in the area of chemical informatics.

The rest of the paper is organized as follows.
Section 2 discusses about related work. Preliminaries
are presented in section 3. In section 4, graph
representative structures including our graph code are
explained.Experimental results are shown in section 5.
And then conclusion is in section 6.

2. Related Work

Over the years, a number of different structures
have been developed to represent graphs more and
more efficiently. Developing such structures is
particularly challenging in terms of storage space and
computational time.

MichihiroKuramochi et al. proposed a canonical
labeling [5] for representing graphs. Canonical label of
a graph is nothing more than a code that uniquely
identifies the graph such that if two graphs are
isomorphic to each other, they will be assigned the
same code. Canonical label of a graph is as the string
obtained by concatenating the upper triangular entries
of the graph’s adjacency matrix. Once the canonical
label has been obtained, the adjacency matrix
representation is discarded.

The disadvantage of this structure is if a graph
has |V| vertices, the complexity of determining its
canonical label is in O(|V!|) making it impractical even
for modern size graphs.

The search space of canonical labeling can be
reduced with vertex invariants. Vertex invariant is a
well-known technique in which we can partition the
vertices by their degrees and labels. Then, we try all
the possible permutations of vertices inside each
partition. Vertex invariants do not asymptotically
change the computational complexity of canonical
labeling. For example, if a given graph is regular, we
cannot create fine partitions and vertex invariants do
not reduce the search space [6].

R Vijayalakshmi et al. [7] propose F
novel approach for detection and elimination of
automorphic graphs in graph database. F
edge-based graph representation. It involves three main
phases: preprocessing, feature extraction and pattern
matching. In preprocessing, edge list of the input graph
is generated. In feature extraction phase, grid code is
generated. In pattern matching the new grid code is
compared with those of other graphs in graph database.

The disadvantage of this structure is it requires
exhausted enumeration to generate grid code.

3. Preliminaries

This section presents the key concepts, notations
and terminology used in this paper, which include:
labeled graph, graph isomorphism, and graph code
representation.

Definition 1 (Labeled Graph) A labeled graph is a
four-element tuple G = (V, E, ∑, f) where V is a set of
vertices and E is a set undirected edges joining
distinct vertices. ∑ is the set of vertex and edge labels
and f: V U E ∑ maps vertices and edges to their
labels.

In this paper, the size of a graph is
number of its edges. An example labeled graph is
shown in figure 1.

Figure 1. A Labeled Graph

Definition 2(Graph Isomorphism) Two graphs G1 =
(V1, E1) and G2 = (V2, E2) are isomorphic if they are

1 2

3 4

5

s

s s

s

s

142

The disadvantage of this structure is if a graph
|V| vertices, the complexity of determining its

canonical label is in O(|V!|) making it impractical even

The search space of canonical labeling can be
reduced with vertex invariants. Vertex invariant is a

ch we can partition the
vertices by their degrees and labels. Then, we try all
the possible permutations of vertices inside each
partition. Vertex invariants do not asymptotically
change the computational complexity of canonical

given graph is regular, we
cannot create fine partitions and vertex invariants do

] propose F-GAF: a
novel approach for detection and elimination of
automorphic graphs in graph database. F-GAF uses

based graph representation. It involves three main
phases: preprocessing, feature extraction and pattern
matching. In preprocessing, edge list of the input graph
is generated. In feature extraction phase, grid code is

he new grid code is
compared with those of other graphs in graph database.

The disadvantage of this structure is it requires
exhausted enumeration to generate grid code.

This section presents the key concepts, notations
used in this paper, which include:

labeled graph, graph isomorphism, and graph code

A labeled graph is a
, f) where V is a set of

vertices and E is a set undirected edges joining two
is the set of vertex and edge labels

maps vertices and edges to their

he size of a graph is defined as the
number of its edges. An example labeled graph is

A Labeled Graph

Two graphs G1 =
(V1, E1) and G2 = (V2, E2) are isomorphic if they are

topologically identical to each other, that is, there is a
mapping from V1 to V2 such
mapped to a single edge in E2 and vice versa.

Definition 3(Graph Code Representation)
graph G, the code of G, denoted by code(G) is in the
form eid{(v),eidadj,…}… depending on adjacent edge
information of preprocessing. e
vertex label on which two edges are connected, eid
list of adjacent edge ids for this edge.

4. Graph Representative Structures

A graph data structure consists of a finite
vertices, together with a set of ordered pairs of
nodes. These pairs are known as
the two most commonly used graph representative
structures are adjacency matrix,
Graph can also be represented as XML representation
and image representation (.png,.

4.1. Adjacency Matrix

An adjacency matrix is a means of representing
which vertices of a graph are adjacent to which other
vertices. the adjacency matrix of a finite graph
vertices is the n × n matrix where the non
entry aij is the number of edges from vertex
j, and the diagonal entry
convention, is either once or twice the number of edges
from vertex i to itself. Figure 2 shows an example
graph and its adjacency matrix.

(a) (b)

Figure 2. (a) An Example Graph G (b) Its

Adjacency Matrix

4

s

topologically identical to each other, that is, there is a
mapping from V1 to V2 such that each edge in E1 is
mapped to a single edge in E2 and vice versa.

Definition 3(Graph Code Representation) For a
graph G, the code of G, denoted by code(G) is in the

,…}… depending on adjacent edge
information of preprocessing. eid is the edge id, v is
vertex label on which two edges are connected, eidadj is
list of adjacent edge ids for this edge.

Graph Representative Structures

A graph data structure consists of a finite set of
, together with a set of ordered pairs of these
These pairs are known as edges.Traditionally,

most commonly used graph representative
are adjacency matrix, and adjacency list.

Graph can also be represented as XML representation
and image representation (.png,.jpg,.gif).

is a means of representing
which vertices of a graph are adjacent to which other

the adjacency matrix of a finite graph G on n
matrix where the non-diagonal

is the number of edges from vertex i to vertex
, and the diagonal entry aii, depending on the

convention, is either once or twice the number of edges
Figure 2 shows an example

graph and its adjacency matrix.

Example Graph G (b) Its
Adjacency Matrix

4.2. Adjacency List

An array of linked lists is used. Size of the array
is equal to number of vertices. Let the array be array[].
An entry array[i] represents the linked list of vertices
adjacent to theith vertex.
Figure 3 shows an adjacency list representation

Figure 3. Adjacency List Representation of G

4.3. XML Representation
Representation

 Most of the chemical compound graph dataset
are available in XML filesand image files
4shows an XML representation for graph G

<?xmlversion="1.0"encoding="UTF-8"?>

<graph mode="static"defaultedgetype="directed"

<nodes><node id="1" label="C" />

 <node id="2" label="C" />

<node id="3" label="C" />

<node id="4" label="C" />

<node id="5" label="O" /></nodes>

<edges><edge source="1" target="2" label=”s”/><

<edge source="1" target="3" label=”s”/>

<edge source="2" target="4" label=”s”/>

<edge source="3" target="5" label=”s”/>

<edge source="4" target="5" label=”s”/></edges>

</graph>

Figure 4. XML Representation for Graph G1

4.4. Our Graph Code

In this section, we explain step
procedure of generating our graph code in code
generation phase. It involves two main processes:
preprocessing and code generation.

143

An array of linked lists is used. Size of the array
is equal to number of vertices. Let the array be array[].
An entry array[i] represents the linked list of vertices

representation of G.

Adjacency List Representation of G

 and Image

Most of the chemical compound graph dataset
sand image files. Figure

an XML representation for graph G1.

"directed">

/></nodes>

label=”s”/><

label=”s”/>

label=”s”/>

label=”s”/>

label=”s”/></edges>

ion for Graph G1

we explain step-by-step
procedure of generating our graph code in code
generation phase. It involves two main processes:

4.4.1. Preprocessing

In this step, the input xml file is parsed using
xml parser. For a graph the vertex list, edge list, and
adjacent edge information are generated. Each vertex
in the graph is assigned with unique id.
Vertex id : 1 2 3
Vertex List : C C C

Then the edge list of the graph is defined as
(V id,L,V id) where Vid is the vertex id, L is the edge

label.

4.4.2. Edge Dictionary

When a graph introduced to the database, the
edges in the graph are added into edge dictionary if
these edges are not already existed in edge dictionary.
In this dictionary, these edges are assigned with global
unique ids for further graph processing. Figu
the example edge dictionary for input graphs.

Figure 5. Edge Dictionary

4.4.3. Code Generation

A graph is represented holistically into a graph
code that captures the structural representation of the
graph. Every edge in the graph is assigned with global
unique identifier already defined in the edge dictionary.
For each edge e, the adjacent edges of
investigated in the graph where the identifiers of the
adjacent edges are the global edge identifiers in the
edge dictionary.Instead of using the edge itself, using
the edge ID in the dictionary can have advantages in
three ways:

• Firstly, using the edge ID in the code saves the
amount of storage space.

• Secondly, using the same ID for the
duplicated edge is effective when constructing
the edge code.

• Thirdly, using the edge ID in the code reduces
the time of matching graphs.

Edge dictionary and adjace
are used to generate graph code. Graph codes of the

V id,L,V id : 1,s,2 1,s,3
Edge List: C,s,C C,s,C

Id Edge

1 <C,s,C>

2 <C,s,O>

... …

he input xml file is parsed using
or a graph the vertex list, edge list, and

adjacent edge information are generated. Each vertex
in the graph is assigned with unique id.

4 5
 C O

Then the edge list of the graph is defined as
is the vertex id, L is the edge

When a graph introduced to the database, the
edges in the graph are added into edge dictionary if
these edges are not already existed in edge dictionary.
In this dictionary, these edges are assigned with global
unique ids for further graph processing. Figure 5 shows
the example edge dictionary for input graphs.

Edge Dictionary

A graph is represented holistically into a graph
code that captures the structural representation of the
graph. Every edge in the graph is assigned with global
unique identifier already defined in the edge dictionary.

, the adjacent edges of e are
investigated in the graph where the identifiers of the
adjacent edges are the global edge identifiers in the

Instead of using the edge itself, using
the edge ID in the dictionary can have advantages in

edge ID in the code saves the
amount of storage space.

Secondly, using the same ID for the
duplicated edge is effective when constructing

Thirdly, using the edge ID in the code reduces
the time of matching graphs.

Edge dictionary and adjacent edge information
are used to generate graph code. Graph codes of the

1,s,3 2,s,4 3,s,5 4,s,5
C,s,C C,s,C C,s,O C,s,O

<C,s,C>

<C,s,O>

144

input graphs are stored in graph code store. An
example graph code of G1 is:
code(G1)=1{(c)1,(c)1}1{(c)1,(c)2} 1{(c)1,(c)2}
2{(c)1,(0)2} 2{(c)1,(0)2}.

5. Experimental Result

The experiment described in this section use the
AIDS Antiviral Screen Dataset. The experiment is
done on the Intel Core i5 with 2GB main memory.The
AIDS Antiviral Screen Dataset from Development
Therapeutics Program NCI/NIH is available publicly.
The dataset contains 43,906 chemical compounds.
Each compound has 32 vertices and 34 edges in
average. The maximum one has 188 vertices and 196
edges.The total number of distinct vertex labels is 62.
The major portions of vertices are C, O, N. In this
section, we evaluate the storage space of our graph
codes with the storage space required by other two
formats: xml file and image file (.png).In figure 6, it
can be seen that the storage space of our graph codes is
significantly less than the other two formats.

Figure 6. Analysis of Storage Space for Various
Numbers of Graphs between Graph Code, XML

File, Image File

6. Conclusion and Future Work

Our goal is to find graph isomorphism query in
graph dataset efficiently.The edge dictionary is used to
narrow down the search space. Because most of the
graphs in graph dataset mostly contain similar edges.
By representing graphs as graph codes, the storage
space can be greatly reduced. Our approach can be
extended to labeled directed graphs and graph querying
as a future work.

References

[1] C. Borgelt, and M.R. Berthold, “Mining Molecular
Fragments: Finding Relevant Substructures of
Molecues”, ICDM, pp. 51-58, 2002.

[2] J. Huan, W. Wang, D. Bandyopadhyay, J. Snoeyink, J.
Prins and A. Tropsha, “Mining Protein Family Specific
Residue Packing Patterns from Protein Structure
Graphs”, In Proceedings of the 8th Annual International
Conference on Research in Computational Molecular
Biology (RECOMB), pp. 308-315, 2004.

[3] B.T. Messmer, and H. Bunke, “A Decision Tree
Approach to Graph and Subgraph Isomorphism
Detection”, Pattern Recoginition, December 1991, Vol.
32, No. 12, pp. 1979-1998.

[4] S. Raghavan, and H. Garcia-Molina, “Representing Web
Graphs”, In Proceeding of IEEE International
Conference on Data Engineering, 2003.

[5] M. Kuramochi, and G. Karypis, “An Efficient
Algorithm for Discoverying Frequent Subgraphs”, In
Proc. 2001 International Conference on Data Mining
(ICDM’ 01), pp. 313-320, San Jose, CA, Nov. 2001.

[6] S. Fortin, “The graph isomorphism problem”, Technical
Report TR 96-20, Department of Computing Science,
University of Alberta, 1996.

[7] R. Vijayalakshmi, R. Nadarajan, P. Nirmala, and M.
Thilaga, “A Novel Approach for Detection and
Elimination of Automorphic Graphs in Graph
Database”, Int. J. Open Problems Compt. Math., Vol. 3,
No. 1, March 2010.

